ONLINE CONTROL AND MOMENT OF INERTIA ESTIMATION OF TETHERED DEBRIS

Liam Field, Derek Bourabah*, Eleonora M. Botta

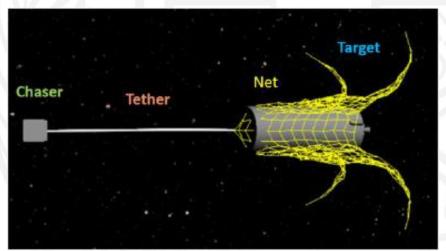
2024 SciTech Forum Orlando, January 8 – 12, 2024

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

- Introduction
- Methodology
 - System Model
 - Estimation
 - Control
 - Parameters
- Performance
- Conclusion

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

- Introduction
- Methodology
 - System Model
 - Estimation
 - Control
 - Parameters
- Performance
- Conclusion



- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Introduction

Tether-based Capture of Debris

- Tether-based capture of debris include tether nets and harpoons
 - Safer capture of debris (longer distances can be maintained)
 - More difficult to control
 - De-tumbling, model prediction, collision prevention, etc.
 - Chaotic motion, coupled dynamics
 - Unknown debris parameters and states

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Introduction

Prior work by our lab:

- Controls (Field and Botta [1])
 - Maintain safe operations
 - Assume known debris tether attachment point, attitude, and position

- Estimation (Bourabah et. al. [2])
 - Estimate attitude, angular rate, and principal Mass Moments of Inertia (MMI)
 - Assume controls know true debris states

This work performs estimation and control simultaneously

(i.e., controls don't assume known debris states)

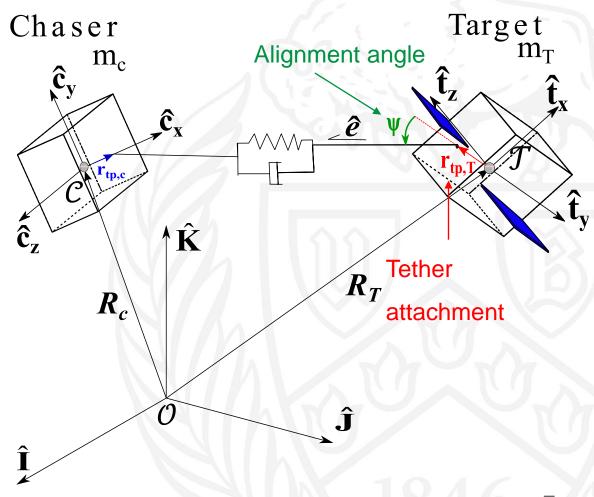
- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

- Introduction
- Methodology
 - System Model
 - Estimation
 - Control
 - Parameters
- Performance
- Conclusion

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

System Model

 Rigid body chaser and debris connected by massless, extensible tether modeled as a single spring-damper


 $\mathcal{O}[\widehat{I},\widehat{J},\widehat{K}]$: ECI frame

 $\mathcal{C}[\hat{c}_x, \hat{c}_y, \hat{c}_z]$: Chaser body frame

 $\mathcal{T}[\hat{t}_x, \hat{t}_y, \hat{t}_z]$: Target body frame

 r_{tp} : Tether attachment point

Ψ: Alignment angle

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Challenges

Controls

 Require knowledge of debris states (Attitude, angular rates)

Estimated

Requires knowledge of chaser states

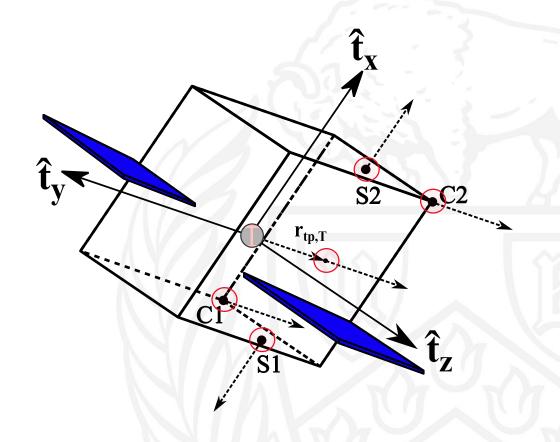
Assumed known

Estimation

Requires knowledge of acting moments on target

Debris connected via tether

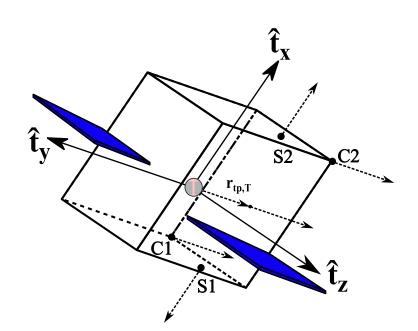

Tether tension provides moment for estimation

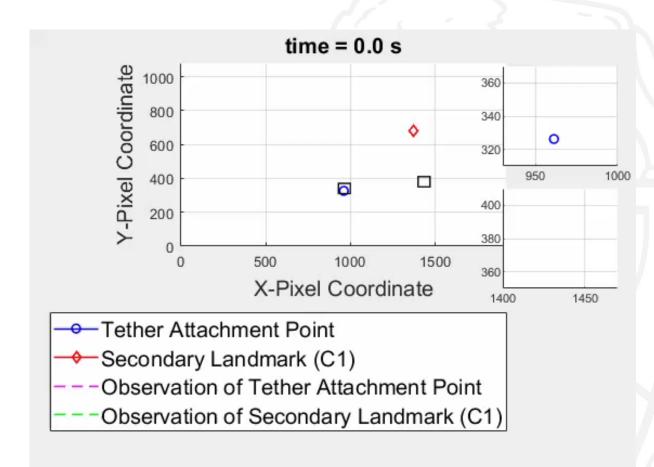


- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Camera-Tracked Debris Features

- 5 tracked features
 - 3 on –y face of debris
 - 1 each on +/-x face of debris





- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Camera Model w/ Occlusion

- Assume known tether attachment points in respective body frames
- Camera generates pixel coordinate measurements of various debris features

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusior
- References

Unscented Kalman Filter Dynamics

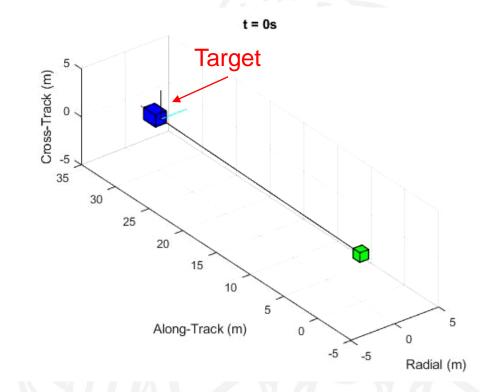
 Unscented Quaternion Estimator UKF, States:

$$\mathbf{X} = \left[\delta p_{x}, \delta p_{y}, \delta p_{z}, \omega_{x}, \omega_{y}, \omega_{z}, J_{x}, J_{y}, J_{z}\right]^{T}$$

- Measurement model utilizes tension and pixel coordinate measurements $(\mathbf{h}(\mathbf{x}) = [T, p_x, p_y]^T)$
- Measured tension used directly in dynamics

$$\begin{bmatrix} \dot{\hat{q}}_{1} \\ \dot{\hat{q}}_{2} \\ \dot{\hat{q}}_{3} \\ \dot{\hat{q}}_{4} \\ \dot{\hat{\omega}}_{x} \\ \dot{\hat{\omega}}_{y} \\ \dot{\hat{f}}_{z} \end{bmatrix} = \begin{bmatrix} (\hat{q}_{4}\hat{\omega}_{x} - \hat{q}_{3}\hat{\omega}_{y} + \hat{q}_{2}\hat{\omega}_{z})/2 \\ (\hat{q}_{3}\hat{\omega}_{x} + \hat{q}_{4}\hat{\omega}_{y} - \hat{q}_{1}\hat{\omega}_{z})/2 \\ (\hat{q}_{1}\hat{\omega}_{y} - \hat{q}_{2}\hat{\omega}_{x} + \hat{q}_{4}\hat{\omega}_{z})/2 \\ (-\hat{q}_{1}\hat{\omega}_{x} - \hat{q}_{2}\hat{\omega}_{y} - \hat{q}_{3}\hat{\omega}_{z})/2 \\ (r_{y}\hat{T}_{z} - r_{z}\hat{T}_{y} - \hat{\omega}_{y}\hat{J}_{z}\hat{\omega}_{z} + \hat{\omega}_{z}\hat{J}_{y}\hat{\omega}_{y})/\hat{J}_{x} \\ (r_{z}\hat{T}_{x} - r_{x}\hat{T}_{z} - \hat{\omega}_{z}\hat{J}_{x}\hat{\omega}_{x} + \hat{\omega}_{x}\hat{J}_{z}\hat{\omega}_{z})/\hat{J}_{y} \\ (r_{x}\hat{T}_{y} - r_{y}\hat{T}_{x} - \hat{\omega}_{x}\hat{J}_{y}\hat{\omega}_{y} + \hat{\omega}_{y}\hat{J}_{x}\hat{\omega}_{x})/\hat{J}_{z} \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References


Relative Distance Control

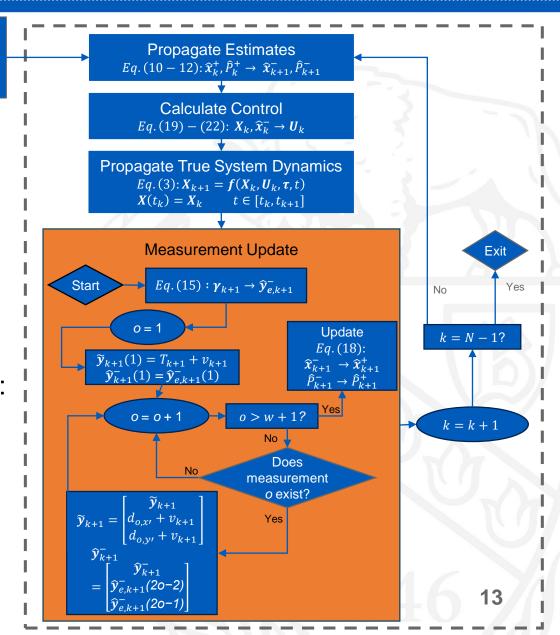
- Proportional-Integrative-Derivative Controller
 - ullet Reach and maintain a desired elongation, Δl
 - Process variable: $\hat{e}_k = \Delta l + l_0 \hat{l}_k^-$

$$\hat{l}_k^- = ||oldsymbol{R}_C +^{\mathcal{O}} oldsymbol{r}_{tp,C} - oldsymbol{R}_T -^{\mathcal{O}} \hat{oldsymbol{r}}_{tp,T}||$$

Determines thrust:

$$\boldsymbol{U} = -\left(K_P \hat{e}_k + K_I \int_0^t \hat{e}_k dt + K_D \hat{e}_k\right) \frac{\boldsymbol{V}_C}{||\boldsymbol{V}_C||}$$

Uses estimated debris states and parameters: $\;\hat{\dot{e}}_k = -\hat{\dot{l}}_k^i$


$$\hat{l}_k^- = (oldsymbol{V}_C +^{\mathcal{O}} oldsymbol{A}^{\mathcal{C}} oldsymbol{\omega}_C imes^{\mathcal{C}} oldsymbol{r}_{tp,C} - oldsymbol{V}_T -^{\mathcal{O}} \hat{oldsymbol{A}}^{\mathcal{T}} \hat{oldsymbol{\omega}}_T imes^{\mathcal{T}} oldsymbol{r}_{tp,T}) \cdot rac{oldsymbol{V}_C}{||oldsymbol{V}_C||}$$

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Control Diagram

Initialize $X_0 = \begin{bmatrix} X_0^C \\ X_0^T \end{bmatrix}$ \widehat{x}_0^+

- Control
 - Reach and maintain desired elongation
 - 50 N saturation
 - A priori estimates used in PID controller
- 500 Monte-Carlo runs
 - 2 cases camera measurement frequency:
 - 1 Hz
 - 10 Hz
 - Tension measurement frequency: 10 Hz

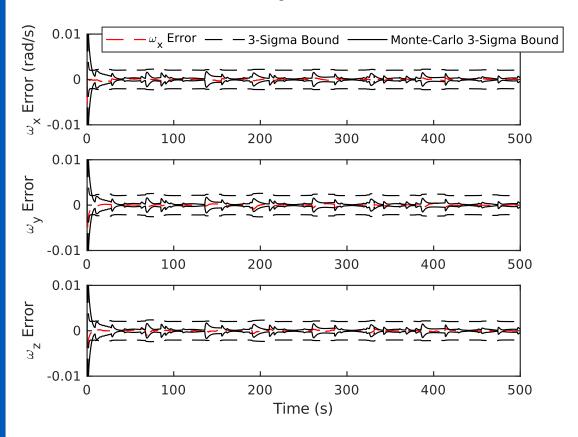
- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Simulation Parameters

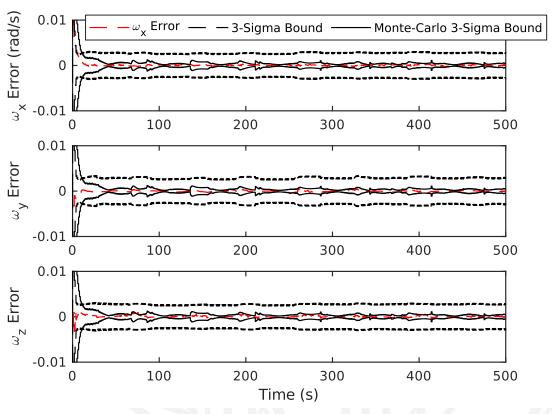
Parameter	Value
Chaser Inertia Matrix J_C (kg-m ²)	diag(83.3, 83.3, 83.3)
Target Inertia Matrix J_T (kg-m ²)	diag(15000, 3000, 15000)
Chaser Mass m_C (kg)	500
Target Mass m_T (kg)	3000
Tether Young's Modulus E (Pa)	60×10^{9}
Tether Diameter d (m)	0.001
Tether Natural Length l_0 (m)	30
Tether Damping c (Ns/m)	16
Tether Attachment Point, Chaser $r_{tp,C}$	$[0.5, 0, 0]^T$
(m)	
Tether Attachment Point, Target $r_{tp,T}$	$[0, -0.875, 0]^T$
(m)	

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

- Introduction
- Methodology
 - System Model
 - Estimation
 - Control
 - Parameters
- Performance
- Conclusion


Estimation Performance

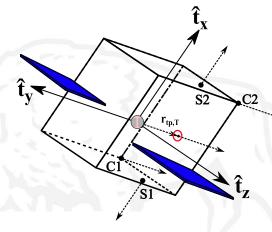
- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- Reference


Results: Angular Velocity

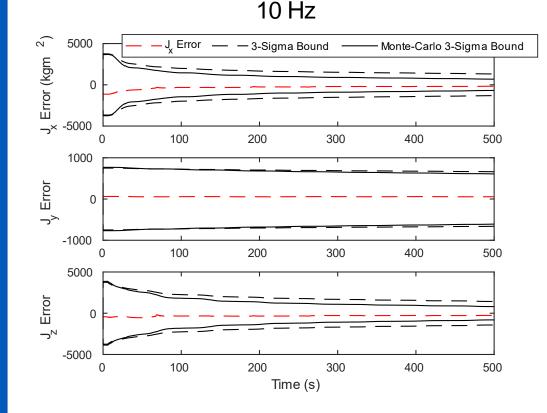
Accurate estimates in both cases

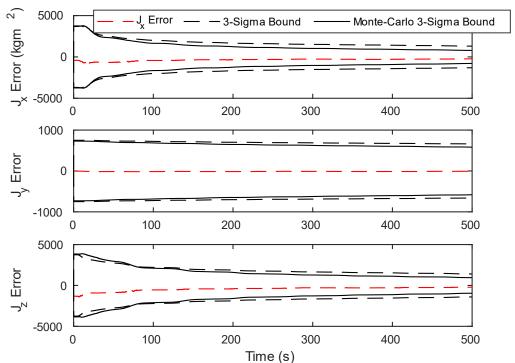
10 Hz

1 Hz causes slightly longer convergence time 1 Hz


Estimation Performance

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References


Results: Principal MMI Estimates


1 Hz:

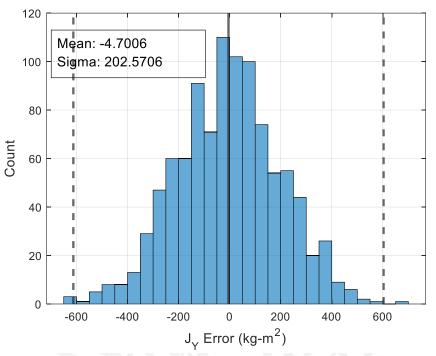
- slightly longer convergence time
- uncertainty more closely matches statistics

Estimation Performance

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- Reference

Results: Final Principal MMI Estimates

Parameters	J_x	J_y	J_z
True Value (kg-m ²)	15000	3000	15000


10 Hz

Parameters	J_x	J_y	J_z
Mean	0.23%	-0.15%	0.29%
STD	1.51%	6.75%	1.79%
99.73% Final Estimates	4.76%	20.40%	5.66%

1 Hz

Parameters	J_x	J_y	J_z
Mean	0.18%	-0.41%	0.21%
STD	1.75%	6.46%	2.12%
99.73% Final Estimates	5.43%	19.79%	6.57%

- Update frequency effect on final estimates is negligible
- Final estimate distribution is normal

Control Performance

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- Reference

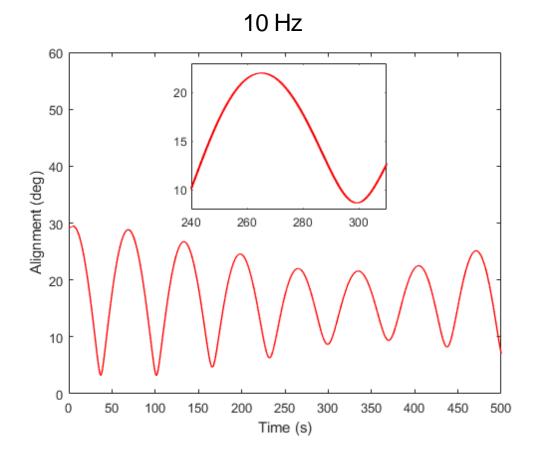
Results: Elongation

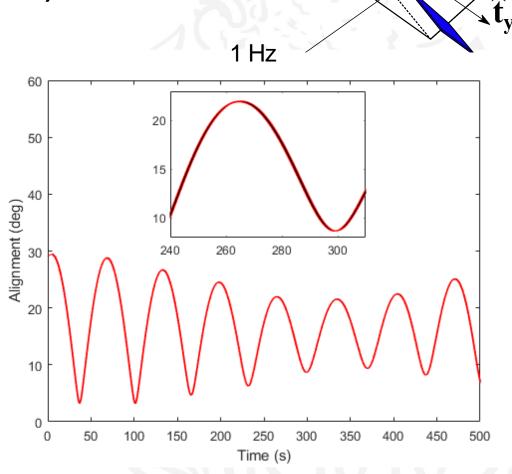
Control objective: Maintain safe post-capture operations

500

15

20


400


Control Performance

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Results: Alignment Angle

Safety is maintained (alignment angle $\Psi < 90^{\circ}$)

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

- Introduction
- Methodology
 - System Model
 - Estimation
 - Control
 - Parameters
- Performance
- Conclusion

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

Conclusion

- Separately developed control and estimation algorithms are now implemented together.
- Two different camera measurement frequencies investigated (1 Hz, 10 Hz).
- Estimation performance is minorly affected by frequency of measurements.
- Safe post-capture operations maintained with both measurement frequencies.

Future work

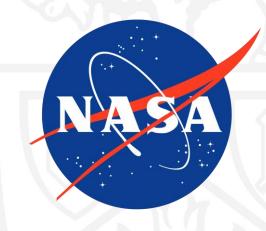
- Release additional required assumptions (e.g., known center of mass position)
- Modify controller type and control saturation limit

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References

References

- Field, L., Botta, E.M. "Relative Distance Control of Uncooperative Tethered Debris." J Astronaut Sci 70, 55 (2023). https://doi.org/10.1007/s40295-023-00422-7
- Bourabah, D., Gnam, C., and Botta, E.M. "Inertia tensor estimation of tethered debris through tether tracking." Acta Astronautica 212 (2023) https://doi.org/10.1016/j.actaastro.2023.08.021

- Outline
- Introduction
- Methodology
- System Model
- Estimation
- Control
- Parameters
- Performance
- Conclusion
- References


Thank you!

Questions?:

liamfiel@buffalo.edu

derekbou@buffalo.edu

ebotta@buffalo.edu

Funded by the National Science Foundation Award# CRII: RI:2105011 Awarded NASA Space Grant Fellowship