Relative Distance Control of Uncooperative **Tethered Debris**

Liam Field, Eleonora M. Botta

Department of Mechanical & Aerospace Engineering University at Buffalo, SUNY

January 16, 2023

- Introduction
- 2 System Modeling and Control
- 3 Simulation Results
- 4 Sensitivity Study
- 5 Conclusion
- 6 Estimation and Control

- Introduction

Tether-Based Active Debris Removal

Active debris removal by means of interconnection through a flexible tether is a promising option. The primary means of capture through such a tether are:

- Nets
- Harpoons

The flexible connection introduces complex dynamics in the post-capture phases of the ADR mission that the chaser craft must manage, particularly the slackness in the tether.

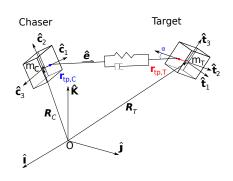
Relative distance controllers have been proposed (Jaworski et al., 2017; Cleary and O'Connor, 2016).

Objectives:

- Propose PD and PID controllers
- Investigate dynamics of the tethered system

- 2 System Modeling and Control

Model Assumptions and Layout


Assumptions

- Rigid chaser (cube) and target (rectangular prism)
- No external forces other than gravity and tether tension
- Kelvin-Voigt tether model
- Important frame definitions

$$\mathcal{O} = [\hat{\mathbf{I}}, \hat{\mathbf{J}}, \hat{\mathbf{K}}]$$

$$\mathcal{C} = [\hat{\boldsymbol{c}}_1, \hat{\boldsymbol{c}}_2, \hat{\boldsymbol{c}}_3]$$

$$\mathcal{T} = [\hat{\boldsymbol{t}}_1, \hat{\boldsymbol{t}}_2, \hat{\boldsymbol{t}}_3]$$

 $\alpha = alignment angle$

Kinematics and Dynamics

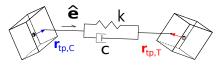
Translational dynamics:
$$m\ddot{R} = -m\mu \frac{R}{||R||^3} + T + U$$

 $T \rightarrow \text{Tension } U \rightarrow \text{Control Input}$

Target attitude: represented by a unit quaternion $\mathbf{q} = [\mathbf{q}_0, \mathbf{q}_v]^T$, with $\mathbf{q}_{v} = [q_1, q_2, q_3].$

Kinematic relationship between the attitude and angular rates:

$$\dot{m{q}} = rac{1}{2}egin{bmatrix} -q_1 & -q_2 & -q_3 \ q_0 & -q_3 & q_2 \ q_3 & q_0 & -q_1 \ -q_2 & q_1 & q_0 \end{bmatrix}egin{bmatrix} \omega_x \ \omega_y \ \omega_z \end{bmatrix}$$


Rotational dynamics for body X:

$$\dot{\boldsymbol{\omega}} = J_{X}^{-1}(^{\mathcal{X}}\boldsymbol{r}_{to,X} \times ^{\mathcal{X}}\boldsymbol{A}^{\mathcal{O}}\boldsymbol{T} - \boldsymbol{\omega} \times J_{X}\boldsymbol{\omega} + \boldsymbol{\tau})$$

where \mathcal{X} is its respective body fixed frame (e.g. ${}^{\mathcal{C}}\mathbf{r}_{tp,\mathcal{C}}$).

Tether Modeling

- Cannot support compression
- No twisting or bending modeled

Tether Tension Vector:
$$T = \begin{cases} T \hat{\mathbf{e}} & \text{if } (l > l_0) \land (T > 0), \\ 0 & \text{if } (l \le l_0) \lor (T \le 0). \end{cases}$$
 $T = k(l - l_0) + c\dot{l}$

 $k = \text{stiffness } c = \text{damping } l_0 = \text{natural length } \delta l = \text{elongation}$

Tether Heading Vector:
$$\hat{\mathbf{e}} = \frac{\mathbf{R}_T + {}^{\mathcal{O}} \mathbf{r}_{tp,T} - \mathbf{R}_C - {}^{\mathcal{O}} \mathbf{r}_{tp,C}}{||\mathbf{R}_T + {}^{\mathcal{O}} \mathbf{r}_{tp,T} - \mathbf{R}_C - {}^{\mathcal{O}} \mathbf{r}_{tp,C}||}$$

Tether Length and Length Rate:
$$I = ||\mathbf{R}_T + {}^{\mathcal{O}} \mathbf{r}_{tp,T} - \mathbf{R}_C - {}^{\mathcal{O}} \mathbf{r}_{tp,C}||$$

 $\dot{I} = (\mathbf{V}_T + {}^{\mathcal{O}} \mathbf{A}^T \boldsymbol{\omega}_T \times^T \mathbf{r}_{tp,T} - \mathbf{V}_C - {}^{\mathcal{O}} \mathbf{A}^C \boldsymbol{\omega}_C \times^C \mathbf{r}_{tp,C}) \cdot \hat{\mathbf{e}}$

Relative Distance Control

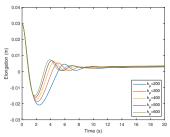
Process Variable: $e = \Delta I + I_0 - I$

 $\Delta I =$ desired elongation

PID/PD Input Thrust Magnitudes:

$$F_{PID} = K_P e + K_I \int_0^t e \, dt + K_D \dot{e}$$

$$F_{PD} = K_p e + K_d \dot{e}$$


PID/PD Input Thrust Directions:

$$\mathbf{F}_{PID} = -F_{PID}\hat{\mathbf{e}}$$

$$\mathbf{F}_{PD} = -F_{PD}\hat{\mathbf{e}}$$

For comparison, open loop control:

$$\mathbf{F}_{OI} = -20\hat{\mathbf{V}}_{C}$$

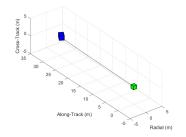
Heuristic tuning of gains, with desired elongation of 0.01 m.

Chaser Attitude Control

Desired chaser axes:

$${}^{\mathcal{O}}A_d^{\mathcal{C}} = [\hat{\mathbf{e}} \mid (\hat{\mathbf{e}} \times \hat{\mathbf{R}}_{\mathcal{C}}) \times \hat{\mathbf{e}} \mid \hat{\mathbf{e}} \times \hat{\mathbf{R}}_{\mathcal{C}}]$$

- 3 Simulation Results

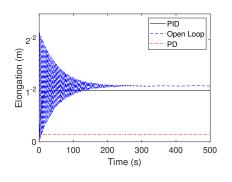

Simulations for Controller Performance Analysis

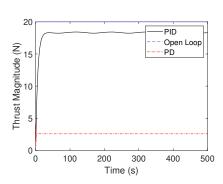
Two scenarios:

- Initially taut tether: $\delta I = 3 \times 10^{-5}$ m
- Initially slack tether: $\delta l = -1$ m

Initial $\alpha = \pi/6$ rad: imperfect capture scenario. Scenarios simulated for 500 s.

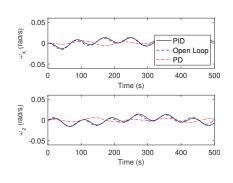
$$K_P = 300 \text{ N/m}$$
 $K_D = 2000 \text{ Ns/m}$ $K_I = 300 \text{ N/ms}$

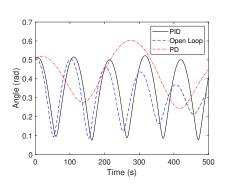

System parameters for the simulation scenarios.


Parameter	Value	Parameter	Value
J_C (kg-m ²)	diag(83.3, 83.3, 83.3)	m _C (kg)	500
J_C (kg-m ²) J_T (kg-m ²)	diag(15000, 3000, 15000)	m_T (kg)	3000
$^{C}\mathbf{r}_{to,C}$ (m)	$[0.5, 0, 0]^T$	k (N/m)	1573
$^{\mathcal{T}}\mathbf{r}_{tp,\mathcal{T}}$ (m)	$[0, -0.875, 0]^T$	c (Ns/m)	16
I ₀ (m)	30	$oldsymbol{\omega}_{\mathcal{T}}$ (rad/s)	$[0, 0.05, 0]^T$

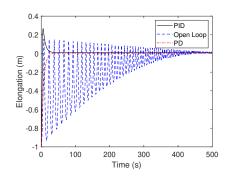
Simulations

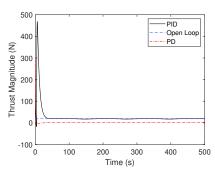
Initially Taut Tether


- PID control achieves δI of 0.01 m
- PD control steady state δI at \sim 0.0014 m.

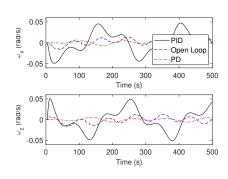


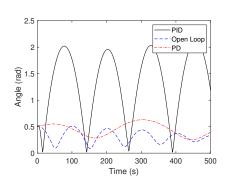
Initially Taut Tether - Continued


- Lower applied moment from PD control.
- Open loop α behavior result of its thrust direction.



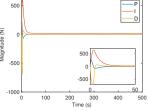
Initially Slack Tether

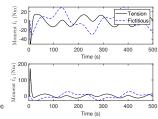

- PID control results in 0.25m peak δI
- PD control steady state δI again \sim 0.0014 m



Initially Slack Tether - Continued

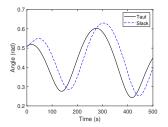
- Relaxation of tether tension in PID control causes large α .
- PD and open loop result in similar ω and α as the previous scenario.





Simulations

Initially Slack Tether - Continued


- PD α difference caused by time when T > 0.
- For PID, K_I responsible for large peak δI .
- For PID, steady-state applied moment insufficient to counter initial angular impulse.

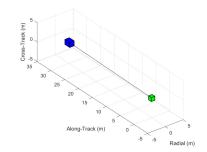
Discussion

- PID controller introduces dangerous motion of the debris; T larger than w/ PD control.
- PD control does not achieve desired ΔI : similar behavior in both simulations

- 4 Sensitivity Study

Sensitivity Study Setup

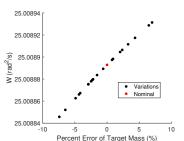
System parameters (target's especially) are uncertain. Sensitivity study conducted on key variables:

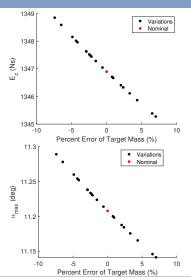

- Target Mass
- Target Moments of Inertia
- Initial Angular Rates
- Initial Relative Distance

Outputs to analyze the variations in the dynamics:

- Peak alignment angle α_{max}
- Control effort E_c
- Integrated squared norm of the angular rates W

$$W = \int_0^t ||\omega||^2 dt$$
 $E_c = \int_0^t |F_{PD}| dt$

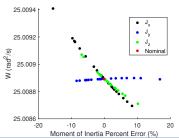

Variable	Error Bound
Target Mass	±300 kg
Target Inertia Matrix	$\pm \text{diag}[30006003000] \text{kg-m}^2$
Target Angular Rates	\pm 0.04 rad/s
Initial Rel. Distance	± 0.3 m

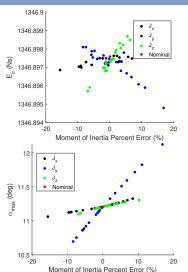


Sensitivity

Target Mass Study

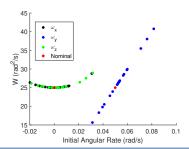
- Decreased mass → more responsive target.
- Angular rate integral W increases with mass.
- Differences marginal.

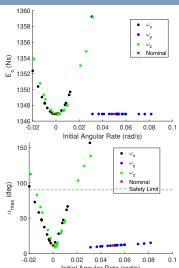




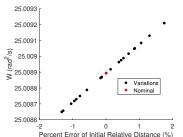
Sensitivity

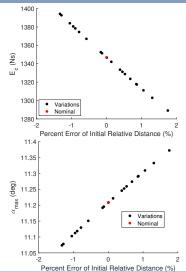
Target Moments of Inertia Study


- Asymmetry in J_x and $J_z \rightarrow$ non-zero $\dot{\omega}_{v}$.
- More significant variations in α_{max} and W.
- E_c differences order of 10^{-3} Ns.
- Varying J_v has the largest impact on α_{max} .



Target Angular Rates Study


- Quadratic trends in ω_x and ω_z .
- Tumbling motion exceeds ability of PD controller.
- Inertial velocity of target attachment point increased.



Initial Relative Distance Study

- E_c increases as chaser gets closer.
- Effects on α_{max} and W caused by chaser's motion when T < 0.
- PD control capable of handling this uncertainty.

Conclusion

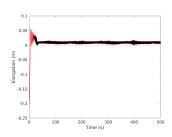
- 5 Conclusion

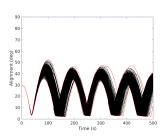
Conclusion

Proposed PD and PID controllers to maintain a relative distance between the chaser and target.

- PID control:
 - Possible tether winding \rightarrow Unsuited for this purpose.
- PD control:
 - Induced more relaxed angular motion on the target.
 - Capable of handling uncertainty in target inertia properties and initial relative distance
 - Cannot maintain safe target attitude motion in certain circumstances.

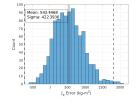
Future Work

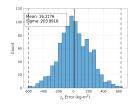

- Apply PD control alongside target state estimation.
- Active target attitude control.

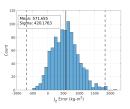


- 6 Estimation and Control

Online Estimation and Control


- Currently assuming image processing and subsequent update is achieved instantaneously at t_k (i.e., at t_k , \boldsymbol{X}_{k}^- is updated to \boldsymbol{X}_{k}^+ which is used for control calculation).
- Measurement frequency of 10 Hz. and tracking 5 feature points.
- Using PID control with saturation at 50 N to get best estimates at the moment.





Online Estimation and Control

The final estimate distributions for J_x , J_y , and J_z are within 3.62%, 0.541%, and 3.81% of the true values, respectively.

Estimation and Control

Thank you for your time. Questions?

liamfiel@buffalo.edu ebotta@buffalo.edu

Acknowledgements: Funded by the National Science Foundation Award# CRII: RI:2105011